
Visualizing Image Priors:
Supplementary Materials

Tamar Rott Shaham and Tomer Michaeli

Technion—Israel Institute of Technology
{stamarot@campus,tomer.m@ee}.technion.ac.il

1. We explain how we perform denoising with the cross-scale patch recurrence prior
of [19], which was originally proposed in the context of blind deblurring.

2. We remark on how we solve the optical flow problem (5) using the algorithm pro-
posed in [38].

1 Denoising Using Cross-Scale Patch Recurrence

Small patches tend to recur abundantly across scales of natural images. This property
was used in [19] for performing blind deblurring. To visualize the cross-scale recurrence
prior of [19], we adapt their algorithm to solving the denoising problem

argmin
x
‖y − x‖2 + λρ(x), (1)

where y is an input (noisy) image, and x is the output denoised image. Specifically, we
use the penalty term ρ(x) proposed in [19], which measures the degree of dissimilarity
between patches in the image x and their Nearest Neighbor patches (NNs) within the
α-times smaller version of x, denoted xα. This term is defined as

ρ(x) = −
∑
j

log

(∑
i

exp

{
− 1

2h2
‖Qj x̂−Rix̂

α‖2
})

. (2)

where Qj is the matrix which extracts the j-th patch from x, Ri is the matrix which ex-
tracts the i-th patch from xα, and h is a bandwidth parameter. Following the derivation
in [19], setting the gradient to zero leads to the condition

x =
y + βz

1 + β
, (3)

where β = λM2

h2 , with M being the patch width (assuming square patches), and z is
an image obtained by replacing each patch in x by a weighted combination of its NNs
from xα. Namely,

z =
1

M2

∑
j

QT
j

∑
i

wi,jRix
α (4)

with weights

wi,j =
exp

{
− 1

2h2 ‖Qjx−Rix
α‖2
}∑

m exp
{
− 1

2h2 ‖Qjx−Rmxα‖2
} . (5)

2 Tamar Rott Shaham and Tomer Michaeli

Input: Noisy image y
Output: Denoised image x
Initialize x = y
for n = 1, . . . , N do

Image prior update: Down-scale the image x by a factor of α to obtain xα.
for k = 1, . . . ,K do

z step: update the image z according to (4).
x step: update the image x according to (3).

end
end

Algorithm 1: Cross-scale patch recurrence denoisng

As in [19], to solve (3), we iterate between computing z based on the current x and
updating x based on the new z. Once every several iterations, we update xα to be the α-
times smaller version of the current x. This denoising algorithm is described in Alg. 1.
As in [19], we use α = 0.75 and one NN per patch.

2 Optical Flow

To solve the optical flow problem (Eq. (5) in the paper), we used the iteratively re-
weighted least-squares (IRLS) algorithm proposed in [38]. We note that our problem
involves an L2 data fidelity term, whereas the algorithm of [38] is typically used with
an L1 data fidelity term. However, the derivation in [38] is actually quite general, and
can be easily adapted to arbitrary data fidelity penalties. Specifically, [38] considers the
minimization of the following objective

argmin
u,v

∫∫
ψ
(
|x(ξ, η)− y(ξ + u(ξ, η), η + v(ξ, η))|2

)
dξdη (6)

+α

∫∫
φ
(
||∇u(ξ, η)‖2 + ‖∇v(ξ, η)‖2

)
dξdη,

where x and y are two images, (u, v) is the flow field which warps y into x, and α is
the weight of the flow regularization term.

The algorithm proposed in [38], iteratively solves sets of linear equations to update
u and v. In [38], this approach was specifically implemented and tested with the robust
functions

ψ(x2) =
√
x2 + ε2, φ(x2) =

√
x2 + ε2, (7)

where ε is some small constant. For our prior visualization algorithm, we rather need to
solve (6) with an L2 data fidelity (namely, where the first term in (6) is the L2 distance
between x and the warped version of y). Therefore, in our implementation, we changed
ψ to be the L2 penalty

ψ(x2) = x2. (8)

This modification leads to a different set of linear equations, which have to be solved in
each stage. But the general algorithm remains the same.

